国际信标委专家:人工智能最终会被函数化

天堂的苦涩
关注

人工智能越来越热,正在大连举行的第十一届夏季达沃斯论坛,也将其列入核心话题——以人工智能为主要特征的第四次工业革命怎样确保整个经济包容性增长?这一会议主题引起很多关注、讨论。而当下与之相关的更深入的热门话题是,人工智能未来将如何影响社会进步和产业发展?快速扩张的中国人工智能产业如何成为推动经济健康发展的强大稳定的潮流?刚刚回国的代表中国出席上周在日本东京举行的国际信标委全会的国际信标委协调员、柏睿数据董事长刘睿民,在接受《华夏时报》记者专访时表示,人工智能其实与物联网的发展,与数据处理技术的发展密切相关,其最基础的东西是庞大的数据量,是数据库技术,是机器学习的算法。刘睿民说,人工智能产业发展的背后,其实是一种博弈,各有关国家技术水平都差不多,某些技术项下中国还有超前,尤其在内存全并行数据库运用上。但技术的发展是一个持续的过程,你若不往前走,别人继续前行就要超过你。

2016年国际信标委美国孟菲斯 “ISO/IEC JTC1/SC32数据管理与交换”分技术委员会全会上,刘睿民代表中国提交的有关“SQL 对 MapReduce 及与之相关的流数据处理的支持”的流数据库技术标准提案,获正式立项。刘睿民说,立项以后,这个标准里到底应含哪些东西,大家会先把想法说出来形成草案,再进行讨论和修改,而讨论和修改则是个博弈过程,刘睿民说,如果按既定方向走,中国这一提案在2018年获得国际信标委全会通过后将正式成为国际标准。

关于人工智能未来发展趋势,刘睿民说,这次在日本举行的国际信标委全会上,他提出了“人工智能最终会被函数化”的推论。

人工智能最终会被函数化    

《华夏时报》:人工智能大热之时,与其相关之技术,包括大数据、机器学习方面,诸多问题如何看清?

刘睿民:人工智能最关键处在于其算法。人工智能算法上世纪70年代即已有之,只因当时数据量不够,难有用武之地。而今有了机器学习,方可大显身手。机器学习通常分四大类、三十多种算法,比较好用者,大约三到五种,在不同领域均有用之。其深入应用,只要数据量足够,特性表现令人满意。人工智能应用,归根到底,就是机器学习算法。

人工智能应用兴起,还因现今物联网相对成熟,大量数据沉淀下来,瞬间数据被采集下来。而以之进行决策,须基于统计算法,基于统计学之精算,例如蒙特卡罗树搜索(Monte Carlo Tree Search,一种人工智能问题中做出最优决策的方法,一般是在组合博弈中的行动规划形式。它结合了随机模拟的一般性和树搜索的准确性)的应用。所谓人工智能,究其实质,无非一些算法应用而已。迄今为止,所有这些算法理论基础并没有发生改变。只是现在人工智能应用所基于数据量比以前要大得多,以前可能是有70万条数据,现在却可能是有70万亿条数据,算出来的东西当然更加精准、更加接近现实,某种程度上就更接近人工智能的定义。

《华夏时报》:有无可能出现新一轮人工智能算法的突破?

刘睿民:到现在为止,算法理论上并没有突破,只是说原来的理论相对比较超前被用了。

《华夏时报》:流数据库技术标准和现在热炒的人工智能概念有何关联?

刘睿民:流数据库主要跟物联网有关,物联网里大量数据出来以后,基本上就跟人工智能应用有关。什么叫物联网?比如自动驾驶就是物联网。各种传感器经过扫描,把数据送到后端进行处理,这就叫物联网。人工智能应用范围很广,同时它在各个行业里又有各自的特异性。比如语言翻译是人工智能,智能驾驶又是另外一种应用领域,这两者一样吗?完全不一样。下棋也是另外一种应用领域。所以,怎样将各领域的东西抽象出来,变成函数、变成通用的基础设施,这类似于以数据库为基础设施,提供一个标准接口,以此标准接口提供标准服务,这是关键。

这次在东京举行的国际信标委全会上,我提出了“人工智能最终会被函数化”的推论。以前的函数都是取平均值、取最大值、取最小值、取delta(复数),差异项,——类似这种简单计算。以后的函数就不是了,以后可能从前面采集一坨数,经过人工智能算出来则可能是某一决策的几个要点,决策者看到这几个要点,可能会选一条路径往下走,最后就变成一个复杂函数了。

《华夏时报》:从人工智能未来来看,推动人工智能迅速发展的三个主导因素:大数据的爆发、算力的普及和提升、行业的应用需求,它们还会有更深入的发展,就是你所说的算法更加复杂、数据更加丰富?

刘睿民:对,就是这样。过去数据量不够,且数据分布非常离散,没有代表性,从中看不到任何规律,因此算法根本用不起来。一旦数据量大了以后,数据的分布就会有一定的关联性。在物联网情境下,大量数据都会被采集下来,就好像我们戴的电子腕表这类智能硬件,一秒钟对人心跳的检测有2-3次,一分钟有120多次。除了心跳应用,还有走路应用、海拔应用、热量计算应用等,这些数据不断往下刷,产生极大量的新数据。类似的应用,比如智能房间、智能驾驶等,实际都是要依靠一堆采集数据的传感器。

这些应用会使算法越来越成熟。到一定阶段,就可能会变成一些固化的函数。现在大家还在探索,在哪个领域用得最好,这个算法用在ABC更好,还是用在EFG更好。但它的特性到底用在哪个行业里面?比如蒙特卡罗树搜索用在类似腕表的计算上面不见得是最好的方法,但是通过其他的算法,也许可以得到更好的结果。

下载OFweek,高科技全行业资讯一手掌握

评论

(共0条评论

评论长度不能少于6个字

暂无评论

今日看点

还不是OFweek会员,马上注册
立即打开